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Summary

Reaction rate coefficients and thermodynamic and transport properties are pro-
vided for the 11-species air model which can be used for analyzing flows in chemical
and thermal nonequilibrium. Such flows will likely occur around currently planned
and future hypersonic vehicles. Guidelines for determining the state of the surround-
ing environment are provided. Approximate and more exact formulas are provided
for computing the propertics of partially ionized air mixtures in such environments.

Introduction

Currently envisaged transatmospheric and aeroassist missions (refs. 1,2,3, and 4)
have created a resurgence of interest in the aerothermodynamic design of hypersonic
vehicles. However, the velocities and altitudes at which these proposed craft would
operate are different, and sometimes more severe, than have been experienced in the
past. As a result, the nonequilibrium flow environment which will surround these
vehicles will considerably impact the vehicle aerodynamics, thermal loads, and propul-
sion system efficiency. Since such an environment is difficult to simulate in current
ground based-test facilities, the design of these future vehicles will rely heavily on
numeric calculations. In turn, these calculations will require a good understanding of
the physical modelling required to simulate these phenomena.

Under hypersonic flight conditions, a vehicle travelling through the atmosphere
will excite the air which flows around the body to very high temperatures as kinetic
energy from the vehicle is transferred. Depending on the flight velocity, various
chemical reactions will be produced behind a shock wave as shown in figure 1 (which
is adapted from ref. 5) for the stagnation region of a 30.5 cm (1 ft) radius sphere.
These reactions will affect the properties of air and cause considerable deviation from
those of a thermally and calorifically perfect gas. A vehicle flying through the higher
reaches of the atmosphere at high velocities may also experience thermal nonequili-
brium (fig. 1), since the lower density reduces the collision frequency, and the high
velocity results in smaller transit times for the air molecules. Both of these processes
create a delay in the equilibration of translational, rotational and vibrational modes of
the thermal energy. Under these conditions, the modelling of the air chemistry
requires a multi-temperature approach in contrast to classical single temperature for-
mulations.

Figure 1 delineates four regions (I through IV), showing when the various chem-
ical activities are initiated at a given altitude and velocity. Similarly, it also depicts
through Regions A, B and C the initiation of chemical and thermal nonequilibrium
processes for different velocity and altitude conditions. This figure clearly shows that
the reaction rate coefficients and thermodynamic and transport properties would
change continuously for a given flight trajectory. For example, in regions A and B
(i.e., before initiation of thermal nonequilibrium), the specific heat at constant pres-
sure C, would change as follows:

C constant in Region I, before the excitation of vibrational energy mode
C,(T) in Region I, after the excitation of vibrational energy mode and
before the dissociation of oxygen

= C,(C;,T) after the dissociation of oxygen

Similarly, the equation of state would change along the flight trajectory as the
thermal equilibrium and thermal nonequilibrium regions (ref. 6) are traversed.
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p= p—AT_T in Regions A and B
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in Region C

In numcrical simulations, the thermodynamic and transport propertics and reac-
tion rate cocfficients (in the case of finite rate chemistry) arc typically required. It is
obvious from the previous discussion that these properties and the equation of state
should be evaluated carefully when chemical and thermal nonequilibrium conditions
exist in the flowfield around a hypersonic vehicle. Under chemical and thermal equili-
brium conditions, the transport and thermodynamic properties of high temperature air
and its components are well documented in the literature (refs. 7,8, and 9). However,
for flows with finite-rate chemistry the individual species properties and appropriate
mixing laws which are required are not as well established. For example, in a partially
ionized gas mixture, the conventional mixing laws (refs. 10 and 11) developed for
non-ionized mixtures can not be extended to higher temperatures without consider-
able error (ref. 12).

The purpose of this report is to provide thermodynamic and transport properties
and the reaction rate coefficients of the most important reactions for the 11 consti-
tuent species of air (N,0,N,,0,,NO N*,0* N3 ,05 ,NO",e”) for temperatures up to
30000 K. Approximate and more exact mixing laws are also provided for partially
ionized gas mixtures. Sources of the input data used in the caiculation of various
flowfield properties are identified. Appropriate formulas are provided for using these
propertics in computations of flows with thermal nonequilibrium.

Symbols

A, coefficients of polynomial curve-fits for thermodynamic proper-
ties, n=1,2...,7

Ay, coefficient in the Arrhenius form of backward reaction rate con-
stant

A, coefficient in the Arrhenius form of forward reaction rate con-
stant

Ay nondiagonal matrix elements of the first Chapman-Enskog for-
mula

Aj ratio of collision cross sections, 552,2)/551,1)

Ay, Bs.Cps. D5 curve-fit coefficients for diffusion coefficient D;;

if iy ] ]

AK";“, BK/." CK/,.DK/‘A ‘EK/J
cocfficients of polynomial curve fits for frozen thermal conduc-
tivity of species {

curve-fit coefficients for viscosity of species i

A g 3531_1), CQ—.(,'I'U' Dﬁlgjl.l)
curve-fit coefficients for collision cross section Q,ﬁ"l)



Arg(zz), B;T(zz), Crf(zz), Dn—(zz)

Apj By Coyr Da;

curve-fit coefficients for collision cross section Q (2 2
curve-fit coefficients for collision cross section ratxo B,-j

ratio of collision cross sections, (5 32 - 40 {M¥)/q {0
temperature exponent for backward reaction rate constant
temperature exponent for forward reaction rate constant

mass fraction of species i
specific heat at constant pressure, [%} , call gm —mole-K

diffusion specific heat at constant pressure,
C;
[Zh, 37 ] , call gm—mole—-K

frozen specific heat,
NS aC;
CP/'_'EIC"CP-‘: Zh, 37 P. cal/ gm—mole~ K

i=]
. .. | 9h
specific heat of species i, |=— | , cal/gm—-mole-K
oT »

coefficient of self-diffusion, cm? sec

binary diffusion coefficient, cm?¥ sec

activation energy for the backward reaction r, erg/ gm—mole
activation energy for the forward reaction r, erg/gm—mole

free energy of species i at 1 amm pressure (standard state),
call gm —~mole

NS
enthalpy of mixture, 3 C;h;, cal/gm—mole

i=1
enthalpy of species i, cal/gm—mole
vibrational component of enthalpy of a molecular specics ¢,
call/ gm —mole
standard heat of formation of species i at temperature T,
call gm—mole
diffusion mass flux of species i, gm/cmz-sec
total effective thermal conductivity of mixture in thermo-
dynamic equilibrium, K, + K; or K+ K,, cal/cm—sec-K
diffusion component of thermal conductivity of mixturc defined
by equation (A 14), cal/cm—sec—-K
thermal conductivity of electrons, cal/cm—sec—K
thermal conductivity of electrons due to clectron-electron colli-
sions only, cal/cm—sec~K

component of thermal conductivity of mixture due to clectron
excitation, cal/cm—sec—K
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frozen thermal conductivity of mixture in thermodynamic equili-
brium, K, + K ,,, cal/cm—sec— K

frozen thermal conductivity of species i in thermodynamic
equilibrium, K, ;+ K, ;, callcm—sec—- K

internal component of frozen thermal conductivity of a mixture
in thermodynamic equilibrium, K, + K,;, + K, cal/cm—sec—K
internal component of the frozen thermal conductivity of species
i in thermodynamic equilibrium, cal/cm-sec—K

reaction component of thermal conductivity of mixture defined
by equation (A16), cal/cm—sec— K

translational thermal conductivity of mixture from first
Chapman-Enskog approximation, cal/cm-sec— K

translational thermal conductivity of mixture without contribu-
tions due to electron-heavy particle collisions, X,, - X,
cal/cm—sec—K

translational component of thermal conductivity of species i,
cal/cm—sec—-K

vibrational component of thermal conductivity of mixture,
cal/cm—sec-K

Boltzmann’s constant, 1.38x 10716 erg/K

backward reaction rate coefficient for reaction r, cm?/ mole- sec
or cm® mole®- sec

forward reaction rate coefficient for reaction r, cm3/ mole— sec
frozen binary Lewis number, pCpr,-j/Kf

reactive binary Lewis number, pC,D;;/K

molecular weight of species i, gm/gm —mole

molecular weight of mixture, gm/gm—mole

Avogadro’s number, 6.0225x 10% molecules/ gm — mole
number density, particles/cm?

frozen Prandtl number, CP/;,L/K,

reactive Prandtl number, C,pu/K
pressure, dyne/cm?
kth component of the overall heat flux vector, cal/cm >~ sec

kth component of the electron heat flux vector due to electron-
electron collisions, cal/cm?- sec

kth component of the vibrational heat flux vector due to
molecule-molecule collisions, cal/cm>~ sec

universal gas constant, 1.987 cal/gm —mole-K
temperature under thermodynamic equilibrium, K

characteristic reaction temperature for the backward reaction r,
E, /k, K



Subscripts:
b

e

el

f

i
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characteristic reaction temperature for the forward reaction r,
Ef,lk, K

electron temperature, K

electronic excitation temperature, K

reference temperature, 298.15 K

rotational temperature, K

translational temperature, K
vibrational-electron-electronic excitation temperature, K
vibrational temperature, K

time, sec

kth component of diffusion velocity of species i, cm/sec
mass rate of formation of species i, g/ cm>- sec
concentration of species i, moles/volume

k th component of general orthogonal coordinate system
mole-fraction of species i

stoichiometric coefficients for reactants

stoichiometric coefficients for products

mole mass ratio of species j, X;/p

viscosity of mixture from first Chapman-Enskog approximation,
gm/cm—~ sec ‘

viscosity of species i, gm/cm—sec
density of the mixture, gm/cm3
density of species i, gm/cm?

average collision cross section (for diffusion, viscosity, and

translational, internal and reaction components of thermal con-

ductivity) for collisions between the species i and j, A%

18=10"%m

average collision cross section (for viscosity and translational

component of thermal conductivity) for collisions between the

species i and j, A?

average collision cross sections (for translational component of

thermal conductivity) for collisions between the species i and j,
2

backward reaction
electron

electronic excitation
forward reaction
species i



J species j
constant pressure
r rth reaction
ref reference condition
rot rotational energy mode
tr translational energy mode
ve vibrational-electron-electronic energy mode
v total number of species, = NS
Abbreviations:
AOTV Aeroassisted Orbital Transfer Vehicle
NASP National Aero-Space Plane
NIR total number of independent reaction
NJ sum of the reacting species (NS) plus the number of catalytic
bodies
NR total number of reactions
NS total number of species

Chemical Kinetic Model and Reaction Rates

When chemical reactions proceed at a finite rate, the rate of production terms
appear in the energy equation when formulated in terms of temperature and in the
species continuity equations (refs. 13,14,15). For a multicomponent gas with NS
reacting chemical species and NR chemical reactions, the stoichiometric relations for
the overall change from reactants to products are:

kg,
NJ TN
o X, O ¥BiXi (D
i=1 ky, =
r

where r=1,2,..,NR and NJ is equal to the sum of the reacting species (NS ) plus the
number of catalytic bodies. The quantities o;, and B;, are the stoichiometric
coefficients for reactants and products, respectively, and ks, and k, , are the forward
and backward rate constants. The quantities X; denote the concentrations of the
chemical species and catalytic bodies in moles per unit volume. The catalytic bodies
(NJ-NS) may be chemical species or linear combinations of species that do not
undergo a chemical change during the reaction.

The net mass rate of production of the ith species per unit volume resulting from
all the reactions NR may be obtained (ref. 14) from

‘ NR [ dx; | MR dp,
B E R Y.

r=1 r=1

or

<.
!

NR
i Miz(ﬁi,r-ai,r)(Rf,r—Rb,r) (Zb)
r=1



where
NJ o
Rf, = kf.rI-II(Yjp) i (20)
JS
NJ g,
Ry, = ky, TTCY;P) (2d)
j=1
Here, the mole-mass ratio v, is defined as
X; C;
J J .
—_—= — j=12,.,NS
P M,
Y;= 1ns (2e)

SZ(-nsyiYi  J=NS+1,..NJ

i=1

\

The constants Z (j_ys),; are determined from linear dependence of the catalytic
bodies upon the NS species. Values of these constants for the 11-species air model are
given in table L.

The reaction rates in equation (1) or equations (2c¢) and (2d) are expressed in the
Arrhenius form as:

_ B,, _ 1 | mole —%
ky,= Az, T /"exp(-Tp, IT), . [ p— } (3a)
B 1 [ mote |~* «
kb,r = Ab,rT b"exp('—TDb,/T) [ R (3b)
’ S\ cm
where
NJ
o = ¥ a1 (42)
i=1
NJ
B = XBi,~1 (4b)
i=1

and TD/’ and Tp, are the characteristic reaction temperatures for the forward and

backward reactions, respectively. Values for the reaction rates k. and , , are tabu-
lated in table II for the 11-species air model. For a specified temperature, density, and
species composition, equations (2) through (4) can be used to obtain the production
rate of a species { in a multicomponent gas by employing the catalytic body efficiencies
and reaction rates from tables I and II. The first seven reactions and reaction rates in
table II are taken from reference 16 and were employed in reference 13 for the 7-
species air model (N,0,N,,0,NO,NO™,e”). Reaction rates for reactions 8 through
20 of table II are taken from reference 17. Some of these reactions have been
regrouped here (and in ref. 18) through the use of third bodies M, through M, which
is similar to the approach in reference 13.

The reaction rates given in table II were originally used by Blottner (ref. 13) and
Dunn and Kang (ref. 17) in the context of a single temperature assuming thermal
equilibrium. One may use Park’s (ref. 19) guidelines (in the context of his two-
temperature model) for defining the rate controlling temperature in dissociation and
electron impact ionization reactions under thermal nonequilibrium conditions. This
was done in reference 20, for example.
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Park has suggested the use of a temperature weighted with the vibrational tem-
perature to characterize dissociation reactions, based on the preferential dissociation
concept. The reaction rates in Park’s model are assumed to be dictated by the
geometric average temperature

Tav = ‘/ TtrTvib (5)
and the dissociation reaction rates are given by
B
kf.r = Af.’ Tav/-’exp(— TD/-'/ Tav) (6)

Treanor and Marrone (refs. 21 and 22) have suggested a more rational (but slightly
more difficult) way than Park’s to account for the effect of vibrational relaxation on
dissociative reactions with the preferential dissociation concept. They have suggested
the use of a vibrational coupling factor (refs. 20,21, and 22) with the dissociation reac-
tion rates obtained under the assumption of thermal equilibrium.

Recent work of Jaffe (ref. 23), based on collision theory and using methods of
statistical mechanics, found no evidence of preferential weighting to any particular
energy mode in obtaining the total energy available in a collision whether it is an elas-
tic, inelastic, or reactive encounter. Jaffe found that the multi-temperature effects on
the reaction rates were small for dissociation. These findings were supported by those
of Moss et al. (ref. 24), who carried out flowfield analyses employing the Direct Simu-
lation Monte Carlo (DSMC) approach. Thus, a weaker dependence of k;, on T,
(such as the one recently suggested by Sharma et al. (ref. 25) as T,, = T.>'T %) might
be more realistic, especially for highly energetic flows.

It is obvious that the multi-temperature kinetic models for high energy flows
based on both preferential and non-preferential dissociation assumptions employ some
degree of empiricism. They exemplify the degree of uncertainty which exists in
modelling the multi-temperature kinetics. Quantum mechanical studies of the type in
reference 23 supplemented by non-obtrusive laser diagnostic studies would be desir-
able to establish these models on a sounder basis.

Species Thermodynamic Properties and Mixture Formulas

Thermodynamic properties (i.e., C,; and A;) are required for each species con-
sidered in a finite-rate flowfield calculation. For calculations with chemical equili-
brium, the frec energies F; are also required. Since the multicomponent gas mixtures
are considered to be mixtures of thermally perfect gases, the thermodynamic proper-
ties for each species are calculated by using the local static temperature. Then, proper-
ties for the gas mixture are determined in terms of the individual species properties
through the relations:

NS
h = 3 Cih; (7a)
=1
with
T

h; = jscp_,-dl' + (Ahif)T=298K (70)
‘19

and
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NS
Cp, = -ZICiCP'i (83)
with
dh;
Coi= |37 (8b)
P

Note that C,, for a mixture defined through equation (8a) is the 'frozen’ specific
heat. This definition does not account for species production or conversion due to
chemical reactions. Frozen specific heat is commonly employed in defining the Prandtl
and Lewis numberst for a mixture and is related to the mixture enthalpy 4 through
the relation

Cfan ¥ ac) M

Expressions for C, ; using the partition function approach were obtained in refer-
ence 26, whereas references 27 and 28 employed a virial coefficient method. The par-
tition function formulation is quite accurate at low temperatures; however, this formu-
lation becomes less accurate at high temperatures because of the introduction of errors
from several sources such as non-rigidity of the rotor and anharmonicity of the oscilla-
tor. The virial formulation defines the potential-energy surface more accurately at
higher temperatures in comparison with the partition function approach. Using the
virial formulation, Browne (refs. 27 and 28) obtained the thermodynamic properties as
corrections to those of the monatomic gas in terms of the first and second virial
coefficients and their temperature derivatives. These data can be used to separate the
contributions of different internal energy modes to the specific heat as is required in
the case of multi-temperature flowfield models. For example, in a two-temperature
model (refs. 19 and 20), advantage may be taken of the fact that the translational and
rotational energy modes are fully excited at room temperature, and therefore, the heat
capacities for these modes are independent of temperature. The combined
vibrational-electronic specific heat for species i, (Cp )., can then be evaluated by
using the value for the total specific heat, C, ;, evaluated at temperature T,, and sub-
tracting out the constant contribution from the translational and rotational specific
heats. This can be described (see fig. 2 for the various contributions) by

[(Cp,i)ve]T" = [Cp,i]Tw - (Cp,i)lr - (Cp,i)rot (10)

The enthalpy, h;, for a two-temperature model can be evaluated similarly, since
contributions from the translational and rotational modes are linear with temperature.
Therefore, the vibrational-electronic enthalpy for species i, (#;),,, can be obtained
from the specific enthalpy h; evaluated at temperature T,, and subtracting out the con-
tribution from the translational and rotational enthalpies evaluated at T,, as well as the
enthalpy of formation.

[(h)elr, = (hidr, = (Cp )y + (Cpdsul(Tye = Treg) = (AR )r (1)

+ See Appendix A for the various definitions.
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The specific enthalpy from all the contributions of internal energy modes can
then be obtained by adding the contributions of translational and rotational enthalpies
(evaluated at the translational-rotational temperature) and the enthalpy of formation
to the vibrational-electronic enthalpy as follows

hi(T,T,,) = [(h)wlr, + [((CpDo+(Cp ) (T=T, ;) + (Ahif)T", (12)

Reference 26 has provided curve fits for C,; and 4;, whereas references 27 and
28 have provided tabulations of these data. Since the use of curve fits reduces the
expense of computing the original functional relations, these thermodynamic proper-
ties have been curve fitted here as a function of temperature for the temperature
range of 300 K < T < 30000 K. These curve fits include those of reference 26 for
the range 300 K £ T £ 6000 K, and new curve fits are provided to the tabulated
values of references 27 and 28 for the range 6000 K < T < 30000 K. The following
polynomial equations are employed for these curve fits:

Specific heat:
c

RP'_" =Ay+ AT + AsT2+ AT+ AT (13)
Specific enthalpy:
h; AT AsT? A ?  ATY A
= A+ + + + + — 14
R T ! 2 3 4 5 7 (14

For equilibrium calculations, the following curve fit for the free energies F; may
be used:
Fo AT AsT? AT} AT Ag- A,

= A{1-In(T)] - > " s T 12 o + T (15)

R

univ
where F” is the free energy of species i at 1 amm pressure (standard state).

A tabulation of the polynomial constants (A, to A;) for the 11-species air model
is given in table III. A least squares technique has been used for obtaining the poly-
nomial coefficients for the five temperature ranges between 300 and 30000 K. To
assure a smooth variation of thermodynamic properties over the entire temperature
range, values of A | to A, should be linearly averaged across the curve-fit boundaries
(i.e., 800< T < 1200, 5500< T < 6500, 14500< T < 15500, and 24500< T < 25500).
An example subroutine which evaluates the polynomial curve fits and performs the
linear averaging is presented in appendix B. This routine may be easily modified to suit
the user’s requirements.

It may be mentioned here that temperature, T, in equations (13) through (15) is
in °X. With the universal gas constant in cal/gm-mole—K , the specific heat and
enthalpies will have the units of cal/gm—mole—K and cal/gm - mole respectively. The
constant A¢ in these equations is related to the heat of formation through the relation

AR iy = (Ah;f)r=29sx (16)

Figure 3 compares the values of specific heat obtained from the polynomial curve
fit (eq. (13)) with the data of McBride et al. (ref. 26) and Browne (ref. 28). Values
provided by Hansen (ref. 29) are also included for comparison. Hansen’s values begin
to deviate from those of references 26 and 28 beyond 4000 K for O, (fig. 3(a)),
beyond 8000 K for N, (fig. 3(b)), and beyond 6000 K for NO (fig. 3(c)). This may



- 11 -

be due to the rigid-rotator and harmonic-oscillator partition function employed by
Hansen. At higher temperatures, the population of levels corresponding to the non-
parabolic regions of the potential energy curve are no longer negligible, and it becomes
necessary to introduce the non-rigidity and anharmonicity corrections into the energy
levels of the molecules as was done in reference 28.

Species Transport Properties and Mixture Formulas

The transport properties required in flowfield calculations are viscosity, thermal
conductivity, and diffusion coefficients. The collision cross sections required for these
properties have been recomputed herein using the same molecular data used previ-
ously by Yos (refs. 7,8, and 9). The computational techniques employed in the calcu-
lations are described in references 30 and 31 which give details of the NATA (None-
quilibrium Arc Tunnel Analysis) code (ref. 32). In NATA, the average collision cross
sections nﬁ,ﬁ-"’) for the collisions between species i and j are calculated from basic
cross section data as functions of temperature and gas composition for each pair of
species in the mixture. The basic data are either in tabular form or are given as simple
analytical functions of temperature or composition. NATA contains twelve methods
or options for calculating the cross sections n'ﬁ_él'l), xﬁ;,-z'z), and B,-;- (the ratio of
cross sections). The options include using the Coulomb cross section for the electrons
and ions plus exponential potential (ref. 33) and Lennard-Jones (6-12) potential (ref.
34) for neutral species in high and low temperature ranges, respectively. The formulas
employed in NATA to compute the transport properties from the collision cross sec-
tions are obtained from an approximation (ref. 35) to the rigorous first-order

Chapman-Cowling expressions.

Single Species Transport Properties

The viscosity p; and frozent thermal conductivity Ky ; of a gas containing a sin-
gle molecular species are given, to a good approximation, by the formulas (ref. 34,
Chapters VII and VIII):

nm,-kT
pyw SNEMAT o gm (17)
16 Q%% cm—sec
= 2.6693% 1073 L, g 17b
rQ ¥ cm—sec (175)
Kii=Kpi+ Kig i (18a)
with
k nkT/ i E}
ri = '72—__\/_ =z ' i (18b)
' 64 Q22 cm—sec—K
i
nNT/IM,;
_ 19891x10-¢ FT/M: cal (18¢)
3 (3 cm—sec—K
15 HiR iy cal
- B Mi%wy _ cal 18d
4 M, cm—sec—-K ( )

+ See Appendix A for various definitions
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and
C,.: kN ®kT/m;
Kint,i = é 2 - _5_ ‘l__ 1.1 - ' 8 (183)
8 | Rusiv 2 zQ {0 cm—sec—K
ﬂ\/ T/M, C,; 5 cal
= 6.3605x 107> b - =, ———— 18£
3 nﬁ'i(il.l) [R,,,,,-v 2] cm—sec—-K (18D
Hi | PDi || Coui 5 cal

= R univ —— 2, —=— 18
M, { 1 MRM"" 2 cm—sec—K (18)

where K, ; is the translational component of the thermal conductivity and K, ; is the
component of thermal conductivity resulting from the diffusion of internal excitation
energy of the molecules. In equations (17a) through (18g), m; is the molecular mass
in gm, k is Boltzmann’s constant (1.38x 10-16 erg/K), T is the gas temperature in K,
n(_fi(,-“) are average collision cross-sections for the molecules in A2, (where
18=10%cm), M; is the molecular weight in  gm/gm—mole,
R iy = 1.987 cal/gm—mole—K, C,; is the specific heat at constant pressure in
cal/gm—mole—~K, p is the density in gm/cm’, and D; is the coefficient of self
diffusion in cm? sec.

From equations (18a), (18d), and (18g), the frozen thermal conductivity may

also be expressed as
Cp.i 5
p.i
—— e — 1
[Rum'v 2 ]} ( 9)

Rt D..

Kf ; - uni p’ i + p i

' M; 4 M
The factor (pD;/u;) appearing in equations (18g) and_(l9) is the reciprocal Schmidt
number and is related to the collision cross sections nQi(i“) through the relation (ref.
34)

_ 670,
=T—=nm (20)

with D;; defined as

NTmkT 2
L= 3NTP 1 m’ (21a)
8 QD |p sec
e
N T /IM; 2
= 2.6280x 1073 \/_— , o (21b)
ragv, s

where p is the pressure in atm. The coefficient of self-diffusion D, must be regarded
as somewhat artificial. It is more correct to regard it as a limiting form of the
coefficient of binary diffusion. The ratio 8 ;>2/x Q"D appearing in equation (20)
is a very slowly varying function of temperature, T, and hence pD;/u; is very nearly
constant. This factor appearing in equation (19) has a value of unity in the Eucken
correction (ref. 34) and is close to 1.32 for the Lennard-Jones potential over a large
temperature range (ref. 36).

The collision cross sections nﬁﬁ-"“ or nﬁy")i , in general, are the weighted

t The collision cross sections designated here as Ttﬁ.‘-(jl") are the same as TG -Q ‘51"')
given in reference 34 and as Q2 i **) given in reference 31
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averages of the cross sections for collisions between species i and j. These have been
defined (refs. 7,8 and 9) as

o T
j j exp(-YHY¥*3(1-cos'y)4n o ;sinyd xdy
Qi) = 22 (22)

oo I
| | exp(=vHy¥*3(1-cos'y)sinydxdy
0 0

where 0;; = 0;(.8) is the differential scattering cross section for the pair (i,j), ¥ is
the scattering angle in the center of mass system, g is the relative velocity of the col-
liding particles, and ¥ = ([m;m;/2(m;+m;)kT1V%)g is the reduced velocity. For colli-
sions between the similar species, equation (22) yields nﬁé"') required in equations
(17) and (18).

The collision cross sections nﬁ;f-“) and uﬁ,-f-z'z) employed here are the same as
those used by Yos (refs. 7,8,9). The cross sections for the neutral species
N,N,,NO,O, and O, were taken from the tabulations of Yun et al. (ref. 37), for
temperatures up to 15,000 K. Above 15,000 K, the cross sections for atomic N were
obtained by extending Yun’s calculations to 30,000 K using the same input data and
techniques as were used in his work. The cross sections for the remaining species
N,,NO,O and O, were extrapolated to roughly 30,000 K assuming the same tem-
perature dependence as calculated for N.

For the ionized species, the calculations used effective Coulomb cross sections
chosen to make the computed transport properties for a fully ionized gas agree with
the correct theoretical results (ref. 38) as discussed in references 7 and 9. The specific
formulas used in the calculations are

r Q3P = 1290, for electrons (23a)
n QPP = 13624%Q, for ions (23b)
rQ Y = 2 QY =0.7952%Q, for electrons and ions (23c¢)
where Z = 1 for singly ionized species and
4
© o T)?
The shielding parameter A is defined as
12 :
9(kT)?  16(kT)%
A= + 23e
[ 4r e6n¢ e“nf’3 (230)
4 s Y232
= |200x107% | —— |+ 152 | L — (239)
10'%p, 10'%p,

where T is the temperature in X and p,=n,kT is the electron pressure in arm. In
equation (22d), e=4.8x10"Yesu is the electron charge. Equation (23) is applicable
for electron pressures of the order 1 arm or below and becomes less accurate as the
electron pressure increases above atmospheric (ref. 38).

In the present report, the transport properties of the ionic species are provided
for a nominal electron pressure of p,=1 atm. For any other electron pressure, it will
be necessary to correct the tabulated transport properties of the ionic species according
to the formula
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pipe) __Kpilpe) _ KeilPe)  _ Kiwi(Pe)  _ InA(l atm)
u‘(l am) Kf"(l atm) K‘,"'(l arm) KW."(I atm) In A(pe)
T Y4 ( T 8/3
In 2091072 | ——| + 1.52|——
[ [IOOOJ ~IOOOJ }
= T ) 7 3 (243)
In [209% 107 | ——x| + 1.52|——7r
1000p,"* | i 1000p,"

Similarly, the collision cross sections mﬁ,&’") (for the pair of species where both are
ions or electrons or a combination of the two) for any other electron pressure p, may
be obtained from the values provided herein for p,=1 atm by employing the relation

rQ0p,)  InA(p,)
rQ{(1am) InA(1lam)

4 N 8/3
_ T T
In 2091072 | ———| + 1.52 | ———
[ [ 1000p,"* ] [ 1000p,Y 4 ]
= - (24b)

T 4 T 8/37
09% 1072 | — 152 | ——
1“[20" 0 1000J + 13 [1000}

Equation (24b) is also applicable for i=j (single species).

In calculating the contribution K, ; of the internal energy states to the thermal
conductivity for the atomic species N and O, the diffusion cross section ©Q i in
equations (18e) or (18f) has been set equal to the corresponding charge-exchange
cross section for the atom and atomic ion (refs. 8 and 39). As discussed in reference
7, this approximation allows for the effects of excitation exchange in reducing the con-
tribution of internal energy states to the thermal conductivity in a gas of identical
atoms.

The individual species viscosities and thermal conductivities computed using
equations (17) and (18) have been curve fitted herein as a function of tempcrature by
employing the following relations

E, [A,(nT)’+B,(InT) '+ C,InT +D,)
.= e IT i i i i , gzzz 25
H cm-—sec (23)
X = eEK/JT[AK/.i(ln Ty + Be, (nT)%+ Cr, InT + Dr , cal 26)
I cm—sec—K

The curve-fit coefficients appearing in equations (25) and (26) are given in tables
IV and V for the 11 chemical species. These coefficients yield values of thc viscosity
and frozen thermal conductivity of ionic species at a nominal electron pressure of
1 arm and should be corrected for any other electron pressure (or number density) by
using equation (24a).

Figure 4 displays typical results from the viscosity curve fit (eq. (25)) of equation
(17) for some of the neutral and charged species. The frozen thermal conductivity
curve fit (eq. (26)) of equations (19) through (21) is shown in figure 5 for the same
species. It may be noticed from these figures (and in tables IV and V) that a higher
order curve is needed for the charged species because of the inflection of the viscosity
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and thermal conductivity curves at low temperatures. Higher order curve fits are also
needed for the thermal conductivity of the neutral molecular species.

Transport Properties of Multicomponent Mixtures

Rigorous kinetic theory formulas which have been derived directly from a solu-
tion of the Boltzmann equation using the classical Chapman-Enskog procedure (refs.
33 and 40) are available for obtaining the transport properties of a gas mixture from
the molecular constituent species. In the first Chapman-Enskog approximation, for-
mulas for both the viscosity and translational component of thermal conductivity,
K, ;, of a gas mixtures are of the general form

- .
Ay Ay I x
|
!
|
Avl Ay | Xv
x xy, |0
(1D 0r KD mgse = = e = (27)

where x; is the mole fraction of the ith species, v (= NS) is the total number of
species present in the mixture, and the matrix elements A;; can be expressed in the

form

v
Ay = A= —xixja; + 8;(xA; + lzlxix/au) (28)
where a;j=aj and §; is the Kronecker delta. Elements A; and a; are defined subse-
quently. The superscript 1 on p or K, indicates that equation (27) is the first
Chapman-Enskog approximation for the transport property. Further details for obtain-
ing the transport properties by employing the first Chapman-Enskog approximation are
given in reference 35. In principle, the problem of calculating the transport
coefficients for a given mixture consists of two parts: first, the determination of the
collision cross sections nﬁ,-j for all possible pairs of species (/,j); and second, the
evaluation of the Chapman-Enskog formulas. The amount of computation required to
evaluate the mixture transport properties is greatly reduced if approximations to the
complete Chapman-Enskog formulas are employed. Reference 7 has provided approx-
imate formulas for the transport properties based on the relations developed in refer-
ences 41, 42, and 43. Earlier, references 10, 11, and 44, and more recently, refer-
cnces 12 and 45 have also provided approximations to the Chapman-Enskog formulas.
Thesc are apparently the most satisfactory of the many simplifying approximations for
the mixture viscosity and thermal conductivity which have been suggested by various
authors. However, effects of the elements A; in the Chapman-Enskog formula are
completely neglected in Brokaw’s approximation (ref. 42) so that this approximation
always gives too large a value for the transport properties. In the Buddenberg-Wilke
(refs. 10 and 44) and Mason-Saxena (ref. 11) formulas, the effects of these elements
are accounted for by means of a single empirical constant which is assumed to be the
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same for all gas mixtures. The approximation used by Peng and Pindroh (ref. 41)
represents an attempt to take account of the nondiagonal elements explicitly to first
order at the expense of a somewhat increased calculational effort. Armaly and Sutton
(refs. 12 and 45) neglected the nondiagonal matrix elements A;; in a manner similar to
Brokaw (ref. 42). However, they did not force the value of Au' defined as

= (29)

to be equal to 5/3 and 5/2 in their approximations for vxscosuy and thermal conduc-
tivity, respectively.t They assigned different values to Alj for ion-atom and neutral
atom-molecule interactions. From the computer time, storage, and simplicity point of
view, references 10 and 11 would appear to be adequate for non-ionized gas mixtures,
whereas references 12 and 45 would be useful for computing the viscosity and transla-
tional component of thermal conductivity for an ionized gas mixture.

In all the approximations to the Chapman-Enskog formulas for viscosity and
translational thermal conductivity discussed thus far, the transfer of momentum or
energy from one species to another by collisions has been either neglected or has been
accounted for by an empirical constant. This transfer process, which is represented by
the nondiagonal elements A; in the Chapman-Enskog formula (eq. (27)), has the
effect of making the less conductive species in the mixture carry a larger fraction of
the transport. This process, therefore, reduces the overall conductivity of the mixture
below the value which it would have if the transfer process were neglected.

In reference 35, Yos obtained approximations to the Chapman-Enskog formulas
which account for the effects of the above mentioned transfer process between
different species. These cross sections reproduce the results of the first Chapman-
Enskog formula (eqgs. (27) and (28)) to within a fraction of a percent for all cases con-
sidered in reference 35 and are also simpler to use than the latter. Based on the cross
sections developed by Yos (ref. 35), the following formulas may be used to compute
viscosity and the translational component of thermal conductivity

NS
Y xi/(Ai+ a,,)

h® or k) = —=1s (30)
1 - a, in/(Ai + agy)
i=1

Here, NS is the number of species in the gas, x; is the mole fraction of the ith
species, and a,, is an average value of the nondiagonal matrix elements aq; contained
in equation (28) which is defined as

if

(31a)

with

+ With A~ = 5/3 and 5/2, Aij becomes identically equal to zero in the Chapman-Enskog
formula.
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NS
A= S xA, (31b)
=1

For the viscosity, the quantities a;; and A;; appearing in equations (31a) and (31b) are
defined as

N
a; = W[ZA&')- AP (32a)
i J
N
Ay = #Ai@ (32b)
For translational thermal conductivity, the above quantities are defined as
2 MM, 33 18 .+, 0 2
%= [15/: ] M+ M;)? [[7— ?B"f]A"s -4 (33a)
i j
and
Ag= 2 s AP+ M- M) oM - La+ Bpiv, lad b (33b)
15k (M; + M,)? 2 5

In these equations, M; is the molecular weight of the ith species,
N ,=6.0225% 10% molecules! gm —mole is Avogadro’s number, and
k=1.3805x10"1¢ erg/K is Boltzman’s constant. The remaining quantities are defined
as

zM'M. 1/2
m- 8 i oL 4
873 [nNAkT(Mi+Mj) St (34
2
16 2M M, 5 (2.2
A(z)z—— ] Q(')
VTS | RN kT MMy | (33)
a5 (1,2) a (1,3
. 59§ —4aq
B = (36)

Y o (1,1
Qi

and the collision integrals =2 () are weighted averages of the cross sections defined
through equation (22).

The frozen thermal conductivity K, employed in defining the frozen Prandtl and
Lewis numberst can be obtained from the modified Eucken approximation (ref. 43)

Ki=Kp+Kin (37

where K, is the translational component of the thermal conductivity given by equa-
tions (30) to (36) and K, is the component of thermal conductivity resulting from
the internal excitation energy of the molecules, defined (ref. 7) as

( M,'Cp’,' _ i x.
kN, 2 |

NS
Z Xinsl)
j=1

(38)

NS
Kinl= /‘Z
i=1

t See Appendix A for various definitions
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Here, C, ; is the specific heat at constant pressure of the ith species.

The binary diffusion coefficient D;; needed to obtain the binary and multicom-
ponent Lewis numbers (refs. 13, 14, and 34) is obtained from the complete first
Chapman-Enskog approximation (ref. 34):

cm?/ sec (39%9a)

with
= _ kT 2
ij = W , cm*“=atm/sec (39b)
i
Here p is the pressure in atmospheres. Equation (39b) for D—,-j has been curve fitted
in the present work by using the expression

— D5 [Ap (inT)*+ B5 InT + Cp ] )

D;y=e¢ T 7 Y v, cm —atm/sec (40a)
where T is the temperature in K. The curve-fit coefficients of equation (40a) are
given in table VI for the different interactions occurring in the 11-species air model.

The values of D_;j obtained from equation (40a) with the curve-fit coefficients
given in table VI are for a nominal electron pressure of 1 arm . If the pair of interact-
ing species are both ions, both electrons, or any combination of the two, then D—,-j may
be corrected for any other electron pressure by employing:

T Y4 r T 8/3
In 2091072 |—— | + 1.52|——
{ [IOOOJ ~1000] ]

T 14 r T 83
In [2.09x1072 | ——— | + 1.52
[ [lOOOp, J 1000p, } ]

i

D(P,) = D;(1am) (40b)

If the approximations of references 41 through 43 are employed in place of the more
exact formulas given by equations (30) through (36)t , then the following approxi-
mate formulas for the mixture viscosity and thermal conductivity may be used (ref.
n:

) NS
K mixture = Z w~Ns (41)

15 N5 X;
[Klﬁl)]mizlure = Tkz _IVS-— (423)

i=1

where A,ﬂ-z) is given by equation (35) and o; is defined as
(1-(M;/M;)][0.45- 2.54(M;/M ;)]
Ol,-j =1+ 3
(1+ (M;IM)))

(42b)

+ The approximations of references 41 through 43 may be valid only for the range of condi-
tions for which they have been developed and not for general application because of the very ap-
proximate analysis of the nondiagonal matrix elements A‘-j of equation (27).
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To obtain the viscosity i and the translational component of thermal conductivity
K, of a gas mixture from either the more exact equations (30) through (36) or from
the approximate relations in equations (41) through (42), the binary collision cross
sections © Q) and their ratios are needed in equations (34) through (36). These
cross sections, defined by equation (22), are the same as those used by Yos (refs. 7,8,
and 9). In addition to the formulas given by equation (23) for the Coulomb collision
integrals, the following relations are also employed:

AT = 0795240, (432)
Q3P = 1290, (43b)

where the subscripts e and / represent electrons and ions, respectively, and Z and Q.
are defined in equation (23d).

The NATA code (refs. 30,31, and 32) employed to obtaip the collision cross sec-
tions, n'fT;(j"”, contains default provisions for estimating some cross sections if they
are not specified explicitly in the built-in database or the input. The defaults are sum-
marized as

(i) If both species are ions, then the Coulomb cross sections given by equations (23)
and (43) are used.

(ii) If one species is neutral and the other ionized, then the formula
Q) = U704 (442)

is employed with the constants A (**) defined in the code.

(iii) If both species are neutral and are unlike, then the cross sections are estimated
using the simple mixing rule

R = (R4 BRI (44b)

The built-in data in NATA specify steps for calculating the cross sections for the
like-like interactions of ten species (¢e",N,,0,,N,0,NO,NO*,N*,0%,andN7) and
for those unlike interactions for which experimental or theoretical cross sections are
available in the literature. The cross sections for OF are taken to be the same as
those for N7 in these calculations. NATA contains twelve methods or options for
calculating nﬁ,&"l), 1:5,-5-2'2), and B,-; which are described in detail in references 30
through 32. Note that the accuracy of the calculated transport properties is largely
determined by the accuracy of the input data for the cross-section integrals. A brief
discussion of the values employed in the present study is given in reference 7. Refer-
ence 46 provides a comparison between theory and experiment for the thermal con-
ductivity of nitrogen up to temperatures of 14000 K. Fairly good agreement between
the two is shown there.

Figures 6 and 7 give viscosity and frozen thermal conductivity values, respec-
tively, obtained for equilibrium air at 1 amm by employing the presently computed col-
lision cross sections for the constituent species. The present calculations employ equa-
tion (41) for the calculation of mixture viscosity and equations (37), (38), and (42)
for the mixture frozen thermal conductivity. In addition, the collision cross sections
uscd are nearly identical to those obtained in reference 9. The mixing laws employed
for the viscosity and thermal conductivity shown in figures 6 and 7 are accurate for
sub-ionization temperatures (less than 9000 K at 1 atm) only. For ionized flows, more
accurate mixing laws of the type given by equation (30) should be employed. Figures
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6 and 7 also include viscosity and thermal conductivity values from other researchers
for comparison. In these figures, the predictions of Peng and Pindroh (ref. 41) and
Esch et al. (ref. 47) are based on the Buddenberg-Wilke (ref. 44) type of mixture law
and have the same level of approximation as the present calculations. The mixture
laws employed by Hansen (ref. 29) contain a somewhat lower level of approximation.
In Hansen’s work, the viscosity is computed by using the simple summation formula
for a mixture of hard sphere molecules, whereas a linearized expression with Eucken’s
assumption (ref. 34) is employed for the frozen thermal conductivity. The viscosity
values obtained in the present work are in good agreement (fig. 6) with the values
obtained by Peng and Pindroh (ref. 41) and Esch et al. (ref. 47), presumably due to
the similar mixing laws employed. Hansen’s (ref. 29) predictions are lower, especially
at higher temperatures. Even with the beginning of dissociation of molecular nitrogen
at about 4000 K (when the dissociation of molecular oxygen is almost complete),
Hansen's values of viscosity are not much different from the Sutherland’s law. For
the frozen thermal conductivity (fig. 7), the present values are in agreement with
those obtained by Peng and Pindroh (ref. 41) up to temperatures of about 9000 K.
The values obtained by Esch et al. (ref. 47) deviate from the present values beyond
6000 K. This may be due to the constant cross-sectional values employed for the ion-
ized species in the 8000 to 15000 K temperature range in reference 47. Hansen's
predictions of thermal conductivity are lower than the other data and are closer to the
Sutherland values up to temperatures of about 4000 K. Again, the differences
between the present computations and those of Hansen are presumably due to the
somewhat more rigorous mixing laws employed herein.

There are 121 possible binary interactions for the dissociating air having eleven
species. Therefore, 121 values of each of the collision cross sections tQ (", n Q7 {*?
and the collision cross-section ratio B,, are required to evaluate the transport proper-
ties. By use of the symmetrical equality, i.e. (i,j)= (j,i), only 66 values of each cross
section and cross-section ratio are required. These values have been curve fit in the
present study as a function of temperature for a nominal electron pressure of 1 atm
using the following relations

D— A—pn(InT)*+ B, yInT + C—
n_gi"‘(,l,l) = e ni(il'l)T[ nl'(il'l) ) ni(l'l'l) ni(jl.l)] R 1&2 (45)
D~ [Aeian(InT)2+ Bz pInT + C= (5]
i n aey an o hyeE))
QPP = T % L i, &2 (46)
. DB. [A (InT)2+ B + C o]
B ii’[' u u u (47)

lj=

For electron pressures different from unity, the formula given by equation (24b)
is used to correct the cross sections for the ionic species. No such correction is
. . . -
required for the cross-section-ratio parameter By;.

Curve-fit coefficients appearing in equations (45) through (47) are given in Table
VII through IX for the various interactions in an 11-species air model. Figure 8 illus-
trates some typical curve fits obtained by employing equation (40a) and equations (45)
through (47) with the associated constants. The figure compares the computed values
of binary diffusion coefficient, collision integrals, and collision integral ratio with the
resulting curve fit for different interaction pairs of neutral and ionized species, includ-
ing clectrons. The collision integral ratio, B,;, is almost constant with temperature as
shown in the figure and was fitted with the lower order curve fit where possible. How-
ever, the collision integrals © Q **) for the charged species pairs exhibit more complex
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behavior and require higher order curve fits.

The transport properties of a multi-temperature gas mixture may be obtained by
following the approaches of references 20 and 48. These references have used equa-
tions (41) and (42) for the calculation of mixture viscosity and translational thermal
conductivity. The collision integrals for heavy particles in these equations are
evaluated by using the heavy particle translational temperature, whereas those for elec-
trons with any other partner are obtained by using the electron temperature. With
these modifications, equations (41) and (42) can be written for an 11-species gas mix-
ture as

M; M,
-—-——x. —x
10 Ny " Ny ¢
L mixture = Z + A (48)

: 10 It
= ZHAPM+ 2 ADT) | T xAP(TL)
j:l ]=l

X;
(49)

. 15, 10
(K ) mixture = T/‘Z 10
=11 S o, AP(T) + 3.54x,A(T,)

e yrjey e e

where o; is still obtained from equation (42b). Note that the above definition of X,
does not include contributions due to electron-heavy particle and electron-electron col-
lisions. These contributions, defined by K,, are given later. The approach outlined
here may also be used to obtain the mixture viscosity and thermal conductivity from
the more exact expressions in equations (30) through (36). Equation (38) for the
internal thermal conductivity needs to be modified for the multi-temperature formula-
tion. The contributions resulting from the excitation of different internal energy
modes can not be lumped together into a single term K ,, for such a formulation.
Further, equation (37) no longer can be used to obtain a frozen thermal conductivity
for the mixture. The relation given in equation (37) may be used to obtain a frozen
thermal conductivity with only the rotational mode contributing to the internal energy
at the translational temperature. In general, there are four components of the internal
thermal conductivity, similar to the molecular specific heat (fig. 2). Using these com-
ponents, the kth component of the overall heat flux vector can be expressed as

aT, aT, aT,

- Ktl - Ke

ox* ox* ox*
where K, is the translational thermal conductivity defined previously by equation (49)
and X,,, K, and K, are the rotational, vibrational, and electronic thermal conduc-
tivities, respectively, associated with these internal energy modes (ref. 49). Also, K,
is the thermal conductivity of electrons, T is the translational-rotational temperature,
T, is the vibrational temperature, T, is the electronic excitation temperature, T, is the
electron temperature, x* is the kth component in a general orthogonal coordinate Sys-
tem, and the last term is the diffusive component of the heat flux vector. Further
details of the heat flux vector ¢* and other definitions are given in appendix A. Two
other heat flux vectors are required in describing the conservation equations for the
electron energy and the vibrational energy (ref. 48). The electron heat-flux vector q,"
and the vibrational heat-flux vector qf are defined in appendix C. The thermal con-
ductivities required to evaluate these flux vectors are obtained from the electron-
electron and molecule-molecule collisions. These thermal conductivities are also

k . aT NS k
q° = -(K,+ Krot)ﬁ - K. + Y pihiV/ (50a)
i=1
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defined in appendix C. In the diffusive heat flux component, p;, A;, and VE are the
density, enthalpy and diffusion velocity of species i, respectively. For a two-
temperature model, equation (50a) may be written (refs. 19 and 20) as

P - aT aTve NS k
q" = —(K,+ Krol)-a? - (Kyp+ Ky + Ke)'(.;;‘ + Y pihVi (50b)
i=1

Different components of the internal thermal conductivity appearing in equation
(50) can be evaluated from equation (38) by appropriate modifications for these com-
ponents. For example, X, can be obtained from

M" Cp'i(Trol) _ i X;
NS N4 k 2 )"
(Krol) Partial = /CZ NS e
Excitation i=1 Z Xin_(,'l)(Trol)

j=1 ]
for partial excitation of the rotational internal energy mode if the temperature is less
than that needed to excite the vibrational energy mode (fig. 2). Values of specific heat
at constant pressure, C,;, appearing in equation (51a) can be obtained from the
curve-fit relation of equation (13) by employing the rotational temperature, T,,, if
different from the translational temperature T. When the vibrational mode begins to
excite, the rotational mode is fully excited and equation (S1a) becomes

NS X:
(Krat) Far = kX |35 - (51b)
Excuation i=1 lejA i(jl)(Trol)
j=

Similarly, expressions for K ,;, with partial and full excitations of the vibrational energy
mode may be written as

Mi Cp,i(Tvib) _ l X
NS | | Ny k 2|
(Kyip) pariiat = k2 (52a)
Excuation i=1 Z xinsl)(va)
j=1
and
NS x:
(Kup) Far = k3 | 55— (52b)
Excuaation i=1 Z xinsl)(va)
=1

Once again, the value of C,; appearing in equation (52a) can be obtained from the
curve-fit relation of equation (13) by employing T,;. Also, the vibrational energy
mode is fully excited when the clectronic contribution becomes significant (as shown
in fig. 2 for the specific heat at constant pressure).

The rotational and vibrational energy modes are almost fully excited at their
respective characteristic temperatures. Therefore, for rotational and vibrational tem-
peratures greater than these characteristic temperatures, equations (51b) and (52b) can
be employed to obtain X,, and K,;, respectively.
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Expressions for K, with the excitation of electronic energy mode can be written

as
M CiTw) 9],
NS | | Ny k 2 |
Kel = kz (53)
i=1

NS .
> 5 AT )
=1
In equation (53), higher electronic degeneracy levels begin to contribute to K, (and
C,.i,» etc.) as the characteristic temperatures for the electronic excitation of those
degeneracy levels are reached.

Finally, the thermal conductivity for free electrons, K,, appearing in equation
(50) may be obtained from the modified form of equation (42)

kx
K= 2 ‘ (54)

NS 5
3 145x,A8(T,)
J=1
This thermal conductivity results from the collisions between electrons and other
species, including other electrons.

Concluding Remarks

The present work provides the reaction rate coefficients and thermodynamic and
transport properties for an 11-species air model which are needed in analyzing the high
energy flow environment of currently proposed and future hypersonic vehicles.
Approximate and more exact formulas have been provided for computing the proper-
ties of partially ionized gas mixtures in chemical and thermal nonequilibrium around
such vehicles.

The work presented here uses the best estimates of available data needed to com-
pute properties of the 11-species air model. However, there is need for improved
data, especially for air in thermochemical nonequilibrium. There is also some degree
of uncertainty about reaction rate coefficients at high temperatures. Both the theoreti-
cal and experimental bases of the multi-temperature kinetic models neced to be
strengthened. The virial coefficient approach as compared to the partition function
analysis for obtaining the thermodynamic properties at higher temperatures appears
sufficient but needs further verification. For transport properties, the input data for
obtaining the collision cross sections at high temperatures are not adequate.
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Appendix A

Heat Flux, Frozen and Reactive Prandtl and Lewis Numbers, and Associated
Definitions

The kth component of overall heat flux vector ¢* for the dissociating and ioniz-
ing 11-species air model in a2 multi-temperature formulation can be expressed ast

. oT aT, aT, aT,
k=- Klr Krol ———Kv'—_——'K‘——K ‘h Vk Al
(Kot )ax" ® axk ax* x* +‘le (AD

where the various symbols are explained in the main text after equation (50a). For
thermal equilibrium conditions, equation (A1) may be written as

= —(Ko+Ku+ Kuin+ Ku+ K,) axT +Zp,h vk (A2)
or,
0t = K 2 gp.-h.-vf (A3)
with
Kf=(K,',+K,)+K,-,,, (A4)
and
K=K+ Kuip+ Ky (AS)
It may also be noted that under thermal equilibrium conditions
K,=Kp+K, (A6)

where K, is given by equation (42), K, is obtained from equation (49) and K, is
evaluated from equation (54). The last term in equations (A1), (A2) and (A3)
represents the diffusion contribution to the heat flux vector. The diffusion mass flux
of species i, Jf, is related to the diffusion velocity V¥ through the relation

JE=p;VE (A7)
and for the case of binary diffusion may be expressed as (ref. 50)
aC;
Jf= -pDj— 3eF (A8)

when the species i diffuses into any other species j. Here, C; is the mass fraction of
species i and D;; is the binary diffusion coefficient. Using relation (A7) and (AS),
equation (A3) can be written as
aT 1 aC;
)‘=-—Kf3;-;-—pZD,/ :a r (A9)

i=]

AT L aC; | oT
q =—K/a ﬁ_[ZD‘lh aTJSXT (A10)

+ Here we have used the sign convention that the heat flux vector is positive in the normal
direction away from the surface.

or,




or,
T
1 All
where K is the total effective thermal conductivity defined as
u aC;
K = K+ pXDijhi—5r (A12)
i=1
or,
K = K/ + K‘ (A13)
with the diffusion contribution to the thermal conductivity, X,, defined as
il: aC;
47 FamuTgr
An alternate definition of the total thermal conductivity, K, is given in reference 7 as
K = Kf +K, (AIS)
where K, is the reaction thermal conductivityt defined as
NIR (Ahy/R iy T)?
K,=kY (A16)

NS NS
U B — o)/ ] Y [(Bia— i )x; = (B — oy )% 1450
j=1

i=1
where k is the Boltzmann constant, NIR is the total number of independent reactions
N

N
in the system, NS is the total number of species in the system, Ak =Y (B, — o; ) h; is
i=1

the heat of reaction per gm-—mole for the Ith reaction, x; is the mole fraction of species
i, A{" is defined through equation (34), and a;, and B;; are the stoichiometric
coefficients for reactants and products in the reaction given by equation (1). The ther-
mal conductivities K, given by equation (A1l4) and K, given by equation (A16) are
equivalent.

Similar to relations (A12) and (A13), the total specific heat at constant pressure
may be defined as

_ [an
€= \aT ]p (A1D
or, from equation (9),
(1 3C;
C,=C, + By == Al8)
14 Pr El BT ]p (
or,
Cp=Cp+ Gy, (A19)
with
11 9C;
Cp, = [gh;ﬁ—]’ (A20)

+ The formula for Kr given here already includes the effects of ambipolar diffusion (ref. 51)
on the reaction conductivity of an ionized gas.
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where C, is the diffusion contribution to the specific heat at constant pressure.

Using the various definitions for the thermal conductivity and the specific heats at
constant pressure, the frozen and reactive Prandtl and Lewis numbers usually
employed in dimensionless heat flux calculations may now be defined.i

Generally, the frozen values of specific heat at constant pressure and thermal
conductivities are employed in flowfield calculations. Associated heat flux from these
calculations is, accordingly, expressed in terms of the frozen Prandtl and Lewis
numbers. Alternately, one may also use total values of specific heat at constant pres-
sure and thermal conductivity in flowfield computations. In this case, the heat flux
may be expressed in terms of the reactive Prandtl and Lewis numbers. However, the
total values of C, and K as well as the reactive Prandtl and Lewis numbers can be
used only with calculations involving thermal equilibrium. This is obvious from the
definitions of K and C, given by equations (A13) and (A19), respectively.

The frozen Prandt! number and Lewis numbers are defined as
P"f = Cp,“'/Kf (A21)
Lef_,- = pC,,D,-j/Kf (A22)

where C,,/ and K, are defined by equations (9) and (37), respectively. Generally, the
subscript f is not used in the literature to denote the frozen Prandtl and Lewis
numbers as is done here.

The reactive Prandtl and Lewis numbers are defined by employing the total
values of C, and X as

Pr, = C,u/K (A23)
Le,',- = pCPD,,/K (A24)

where C, and K are defined through equations (A18) and (A13) or (A15), respec-
tively. Reference 29 gives definitions of the reactive Prandtl and Lewis numbers with
K defined through use of equation (A15) and employs no subscripts on Pr or Le.
The frozen values defined through equations (A21) and (A22) are denoted as partial
values in reference 29 and are denoted as Pr’ and Le’ there.

T Dr. Ken Sution of NASA Langley Research Center provided these definitions in an unpub-
lished memo.
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Appendix B

Fits

This appendix lists a sample Fortran subroutine which evaluates the species
specific heats and enthalpies for an 11-species air model using polynomial curve fits as
functions of temperature. Five temperature ranges are used for each species for tem-
peratures between 300 K and 30000 K. Properties evaluated near the temperature
range boundaries are smoothed by linearly averaging the polynomial coefficients to
assure continuous derivatives. The subroutine may be easily modified for different

needs.

oNoEeNeNoNeNoXe)

a0 O

SUBROUTINE THERMO(T,CPLHI)

Computes enthalpy and specific heat for 11 species by
approximating polynomials. Polynomial coefficients are stored in
arrays Al to A6 and are linearly averaged at the temperature range
boundaries.

input: T temperature, K
output: CPI specific heats of the species, cal/ gm-mole-K
HI enthalpies of the species, cal/ gm-mole

DIMENSION A1(11,5),A2(11,5),A3(11,5),A4(11,5),A5(11,5),A6(11,5)
DIMENSION P(6),COEF(11,5,6)
DIMENSION CPI(11),HI(11)

EQUIVALENCE (A1,COEF)

Universal gas constant, cal/ gm-mole-K
DATA UNIR /1.987/

Coefficients are input for five temperature ranges

K= 4

L=3

IF(T.GT.15500.)GO TO 20
K= 3

L=4

IF(T.GT.65000GO TO 30
K=2

L=3

IF(T.GT.1200.)G0O TO 40
K=1

L=2

PA= 1.0

PB= 0.0

IF(T.LE.8300.)GO TO 350
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PB= (1./400.)*(T-800.)
PA= 1.0-PB
GO TO 50

40 CONTINUE
PA= 1.0
PB= 0.0
IF(T.LE.5500.)GO TO 50
PB= (1./1000.)%(T-5500.)
PA= 1.0-PB
GO TO 50

20 CONTINUE
PA= 0.0
PB= 1.0
IF(T.GE.25500.)GO TO 50
PA= 1.0
PB= 0.0
IF(T.LE.24500.)GO TO 50
PB= 0.001%(T-24500.)
PA= 1.0-PB
GO TO 50

30 CONTINUE
PA= 0.0
PB= 1.0
IF(T.GE.15500.)GO TO 50
PA= 1.0
PB= 0.0
[F(T.LE.14500.)GO TO 50
PB= 0.001*%(T-14500.)
PA= 1.0-PB

50 CONTINUE

T2= T*T
T3= T2*T
T4= T3*T
TOV= 1.0/T
C Compute properties for 11 species
DO 65 I= 1,11
DO 60 J= 1,6
60 P(J)= PA*COEF(L,K,J)+ PB*COEF(I,L,J)
HI(D= UNIR*T*P(1)+ 0.5*P(2)*T+ P(3)*T2/3.+ 0.25*P(4)*T3
1 + Q.2*P(5)*T4+ P(6)*TOV)
CPI()= UNIR*(P(1)+ P(2)*T+ P(3)*T2+ P(4)*T3+ P(5)*T4)
65 CONTINUE
RETURN
END
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Appendix C

Electron and Vibrational Heat Fluxes and Associated Thermal Conductivities for
Flows with Thermal Nonequilibrium

Electron and vibrational heat fluxes are required in the electron energy and vibra-
tional energy conservation equations in a multi-temperature gas model (refs. 20 and
46). The kth component of heat flux vector ¢f resulting from the collisions between
electrons only is given by

k 9T, k
9. = - K, axk +pehV, chH

where p, (=m,n,) is the density and h, (=(5/2)kT,/m,) is the enthalpy of electrons, m,
is the electron mass, T n, is the electron number density, £ is Boltzmann’s constant, VX
is the kth component of electron diffusion velocity and K, is the thermal conductivity
of electrons resulting from collisions between electrons only. In a flowfield analysis,
the diffusion velocity V£ is generally obtained from the electron concentration gradient
by using the relation

dain(C,)
¢ ax*
where D,; is the binary diffusion coefficient of electrons diffusing into the species j and
C, is the electron mass fraction.

The thermal conductivity K, (appearing in equation (C1)) due to collisions
between electrons only may be obtained from K, (defined through equation (54)) by
employing the relation

Vi=-D (C2)

chc(wZ)(Ta)
- (C3)

x0Ty
1

K" = K'
j=

The kth component of vibrational heat flux vector g* (obtained from molecule-
molecule collisions only) may be written as
. 0T,

qrp = —Kvib—s'T+ Y pihiaViE (C4)
X i= molecules

where h; ., is the vibrational component of enthalpy of the molecules, V¥ is the kth

component of diffusion velocity of the molecules, and K, is the thermal conductivity

due to the collisions between molecules only.

Referring to Fig. 2, A ., for the partially excited vibrational energy mode may be
obtained from

Vivilr,, = (ilr, = [(Co )0+ (Cpi)ra l(Toip = Trep ) — (Ahif)r,,, (C5)

In equation (C3), the vibrational component of enthalpy for species i is obtained by
using the curve-fit relation of equation (14) for the specific enthalpy 4; evaluated at
temperature T,, and subtracting out the contributions from the translational and rota-
tional enthalpies evaluated at T,, as well as the enthalpy of formation. Equation (C5)

t Electron mass m, is related to the electron molecular weight M, through the relation
m,=M,IN,, where Ny = 6.02x 102 molecules/ gm - mole is the Avogadro’s number.
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can be employed up to the characteristic vibrational temperature ©; ,, for the species
i, ie., for T,;, < ©;.,,. For higher temperatures (T,;, > ©;.,), the vibrational energy
mode is fully excited and #4;,, can be obtained from

(hivislr,, = RunivTun! M; (C6)

The thermal conductivity K,;, (also known as the V-V thermal conductivity) in
equation (C4) is obtained from the overall vibrational thermal conductivity K,
(defined in equation (52)) by considering the contribution of molecule-molecule colli-

sions only.
X xAP(Tu
K=K X Lmotos (€T

) 10
i=molecules X,'A;?)(Tm) + x,A,-‘,z’(T,)
i=1
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Table I. Third Body Efficiences Relative to Argon

Efficiences relative to argon of

Catalytic  Z;_ns),;

Bodies 0, N, N (4] NO NO* 07 N3 ot N¥
i= 1 2 3 4 5 6 7 8 9 10

M, 1i 9 2 25 1 1 0 0o 0 0 0
M, 2,i 1 25 1 0 1 o 0 0 0 O
M, 3,i 1 1 20 20 20 0 0 O0 O0 O
M. 4, 4 1. 0 0 O O O O0 O0 O
e 5. o 0 0 0 0 1 11 11




-35~

Table II. Chemical Reactions and Rate Coefficients
No.t Reaction Forward rate coefficient, Backward rate coefficient, Third body
r kforo ky.,, M
cm>3 mole - sec cm3/ mole— sec or cm% mole*- sec
1 0,+M, 220+ M, 3.61x 1087 - M0exp (- 5.94x 104 T) 3.01x 10T -93 O .N,0, N, ,NO
2 NAM,22N+M, 1.92x 10777 ~%3exp (- 1.131x 10%/T) 1.09x 1067 -5 0,03, Ny, NO
3 Ng#N 22N+N 4.15% 102T " “Sexp (- 1.31% 10%T) 2.32x 103713
4 NO+M;2N+0+M, 3.97x 10%T - Sexp (- 7.56x 104T) 1.01x 1027 -5 O .N,03,N,,NO
5 NO+0 2 0,+N 3.18x 10°T “0exp (- 1.97x 10%T) 9.63% 10T %Sexp (- 3.6 10%T)
6 N#+O 2NO+N 6.75% 10%exp (-3.75x 104T) 1.5x 10"
7 N+0O 2NO*+e” 9.03x 10°T %Sexp (- 3.24x 104T) 1.80x 10197 - 1.0
8 O+e 20'+e +e” (3.6% 1.2)x 10%T-exp(~1.58x 10%T) (2.2% 0.7)x 10*°T 43
9 N+e 2 Nt+e+e” (1.1% 0.4)x 10%2T "3 M¥exp (~ 1.69% 10%T)  (2.2% 0.7)x 10°T -5
10 O0+0 205+e" (1.6% 0.4)x 10177~ %%exp (- 8.08x 10T )  (8.02+ 2.0)x 10T -3
11 0+035 20,+0* 2.92x 1087 - exp (- 2.8x 10%T) 7.8x 101703
12 Ng#N*2N+N3 2.02x 104 T %8 exp (- 1.3x 104 T) 7.8x 101 TS
13 N+N 2Nj+e" (1.4% 0.3)x 10Bexp(~6.78x 104T) (1.5 0.5)x 1027~
14 OpN, 2NO+NO*+e  138x 10T 1¥exp(1.41x10%T) 1.0x 10%T-25
15 NO+My2NO*+e +M, 2.2x10T %exp(-1.08x10%T) 2.2x 10%T -5 OuN,
16 O+NO* 2NO+0O* 3.63x 10T ~%6exp (- 5.08x 104 T) 1.5x 10
17 Np#tO” 20+N; 3.4x 10YT ~20%xp (- 2.3x 104 T) 2.48x% 10T -2
18 N+NO™ 2 NO+N* 1.0x 10197 ~09gxp (- 6.1 104T) 4.8x10%
19 0+NO* 2NO+0, 1.8x 105T % Vexp (-3.3% 104T) 1.8x 1013703
20 O+NO* 2 0,+N" 1.34x 10T %3 exp (- 7.727x 104T) 1.0x 10%

+ Reactions and reaction rates for Nos. 1-7 are from Blottner's (ref. 13) 7-species chemical model and Nos. 8-20 are from
reference 17.
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Table III. Constants for Polynomial Curve-fits of Thermodynamic Properties
(300K < T < 30000 K)t

Species Ax Az A; A‘ As As A7
036748E+01 -0.12081£-02 0.23240£-05 -0.63218£-09 ~0.22577E~12 -0.10612E+04 0.23580E +01
0.28963E+01 0.15155E-02 ~0.57235E-06 0.99807E-10 -0.65224E-14 -0.90586E+03 0.61615E+01

N, . 037270E+01 0.46840E-03 —-0.11400£-06 0.11540E-~10 —0.32930E-15 -0.10430E+04 0.12940E+01
096377E+01 —-0.25728E-02 0.33020E-06 -0.1431SE-10 0.20333E-15 ~0.10430E+04 -0.37587E+02

-051681E+01 0.23337E-02 -0.12953E-06 0.27872E-~11 -0.21360E-16 -0.10430E+04 0.66217E+02
036256E+01 -0.18782E~-02 0.70555E-05 -0.67635E-08 0.21556E~11 —0.10475E+04 0.43053E+01
036219E£+01 0.73618E-03 —-0.19652E-06 0.36202E-10 -0.28946E-14 -0.12020E+04 0.36151E+01

0, 037210E+01 0.42540E-03 -0.28350E-07 0.60500E-12 -0.51860E—17 -0.10440E+04 0.32540F +01
034867E+01 0.52384E-03 -0.39123£-07 0.10094E-11 -0.88718£-17 ~0.10440E+04 0.48179E+01
0.39620E+01 0.39446£-03 -0.29506£-07 0.73975E-12 —-0.64209E-17 -0.10440E+04 0.13985E +01
025031E+01 —-0.21800£-04 0.54205£-07 -0.56476E~10 0.20999E-13 0.56099E£+05 0.41676E+01
024503E+01 0.10661E-03 -0.74653£-07 0.18797E-10 -0.10260E-14 0.56116E+05 0.44488E+01

N 0.27480E+01 -0.39090£-03 0.13380£-06 -0.11910E-10 0.33690E-15 0.56090E+05 0.28720E+01

—0.12280£+01 0.19268E-02 ~0.24370E-06 0.12193E~10 ~0.19918£-15 0.56090E+05 0.28469E+02
0.15520E+02 —-0.38858£-02 0.32288£-06 -0.96053E-11 0.95472E-16 0.56090E+05 -0.88120E+02
0.29464E£+01 -0.16382E-02 0.24210E-05 -0.16028£E~08 0.38907E-12 0.29148E+05 0.29640E+01
0.25421E+01 -0.27551E~-04 -0.31028E£-08 0.45511E-11 -0.43680E-15 0.29231E+05 0.49203E+01

o 0.25460E+0! -0.59520E-04 0.27010E-07 -0.27980E-11 0.93800£-16 0.291S0E+05 0.50490F +01

-097871E-02 0.12450E-02 -0.16154E-06 0.80380E-11 -0.12624E-15 0.29150E+05 0.21711E+02
0.16428E+02 -0.39313E-02 0.29840E-06 -0.81613E-11 0.75004E-16 0.29150E+05 -0.94358E +02
0.40459E+01 —-0.34182E-02 0.79819E-05 -0.61139E-08 0.15919E-11 0.97454E+04 0.29975E+01
0.31890E+01 0.13382E-02 ~0.52899E-06 0.95919E-10 -0.64848E~-14 0.98283E+04 0.67458E+01

NO 038450E+01 0.25210E-03 -0.26580£-07 0.21620E-11 -0.63810E~-16 0.97640E+04 0.32120E +01
0.43309E+01 -0.58086E£~04 0.28059E-07 -0.15694E-11 0.24104E-16 0.97640E+04 0.10735E+00
0.23507E+01 0.58643E-03 -031316£~07 0.60495E-12 ~0.40557E-17 0.97640E+04 0.14026E+02
036685E+01 -0.11545E-02 0.21756E-05 -0.48227E-09 ~0.27848£-12 0.11803E+06 0.31779E+01
0.28886E+01 0.15217E£-02 -0.57531£-06 0.10051E£-09 -0.66044FE-14 0.11819E+06 0.70027E+01

NO* 022142E+01 0.17761£-02 -0.43039E-06 0.41738E-10 -0.12829E-14 0.11819E+06 0.11268E+02

-0.33240E+01 0.24420£-02 -0.19057E-06 0.68580E-11 —~099112E-16 0.11819E+06 0.51864£+02
-0.43488E£+01 0.24012E-02 -0.14460E-06 0.33813E-11 -0.28255E-16 0.11819£+06 0.60082E +02
0.25000E+01 0.00000£+00 0.00000£+00 0.00000E+00 0.00000E+00 —0.74538£+03 -0.11734E+02
0.25000E+01 0.00000£+00 0.00000£+00 0.00000E+00 0.00000E+00 -0.74538E+03 -0.11734£+02

e 0.25080E+01 -0.63320E-05 0.13640E-08 -0.10940E~12 0.29340E-17 -0.74500E+03 -0.12080F +02
025001E+01 -0.31128£-09 0.35721£-13 -0.16037E-17 0.25071E-22 -0.74500E+03 -0.11734E+02
025001E+01 0.30158£-09 -0.22620E-13 0.66734E-~18 -0.68917£~23 -0.74500E+03 -0.11734E+02
0.27270E+01 -0.28200E-03 0.11050E-06 -0.15510E-10 0.78470E-15 0.22540E +06 0.36450E+01
027270E+01 -0.28200£-03 0.11050E-06 -0.15510E-10 0.78470E-15 (0.22540E+06 0.36450E+01

NT 0.24990£+01 ~0.37250E-05 0.11470E-07 -0.11020E-11 0.30780E-16 0.22540E+06 0.49500F +01
0.23856E+01 0.833495£-04 -0.58815E-08 0.18850E-12 -0.16120E~17 0.22540£+06 0.56462E+01
0.22286E+01 0.12458F£-03 -0.87636E-08 0.26204E-12 -0.21674E-17 0.22540E+06 0.67811E+01
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0.24985E+01 0.11411E-04 -0.29761£-07 0.32247E-10 -0.12376£-13 0.18795E+06 0.43864F +01
025061E+01 ~0.14464E-04 0.12446E-07 -0.46858E~11 0.65549E-15 0.18795E+06 0.43480F +01

o 0.29440E+01 -0.41080E-03 0.91560£-07 -0.58480E-11 0.11900E-15 0.18790E+06 0.17500E +01
0.12784E+01 0.40866E-03 ~0.21731E-07 0.33252E-12 0.63160E-18 0.18790E+06 0.12761E+02
0.12889E+01 0.43343E£-03 -0.26758£-07 0.62159E-12 ~0.45131E-17 0.18790E+06 0.12604E +02
0.33970E+01 0.45250£~03 0.12720E-06 —0.38790E-10 0.24590E-14 0.18260E+06 0.42050E+01
033970E+01 0.45250E-03 0.12720E-06 -0.38790E-10 0.24590E-14 0.18260E+06 0.42050E+01

Ni 0.33780£+01 0.86290E~03 —0.12760E-06 0.80870E-11 -0.18800E-15 0.18260E+06 0.40730E +01
0.43942E+01 0.18368E-03 -0.71272E-08 -0.17511£-12 0.67176E-17 0.18260E+06 —0.23693E+01
039493E+01 0.36795E-03 —-0.26910£~-07 0.67110E-12 -0.58244E~17 0.18260E+06 0.65472E+00
0.32430E+01 0.11740E~02 -0.39000E-06 0.54370E-10 -0.23920E-14 0.14000E+06 0.59250E +01
0.32430E+01 0.11740E-02 -039000E-06 0.54370E-10 -0.23920E-14 0.14000E+06 0.59250E +01

03 051690£+01 -0.86200£-03 0.20410£-06 -0.13000E~10 0.24940E-15 0.14000E +06 -0.52960F+01
~028017E+00 0.16674£-02 -0.12107E-06 0.32113E-11 -0.28349E-16 0.14000E+06 0.31013E+02
0.20445£+01 0.10313E-02 -0.74046E-07 0.19257E-11 -0.17461E—-16 0.14000E+06 0.14310E+02

t There are five rows of constants provided for cach species which correspond to the following five lemperature ranges,
respectively.

300K € T< 1000 K
1000 K s T< 6000K
6000 K <€ T < 15000 K
15000 K< T< 25000K

25000 K < Ts 30000 K

For temperatures less than 300 K (which may arise in the freestream for certain flight trajectories (refs. 15,52)), the
specific heats of 0,0, N, and N, are practically constant. For such cases, the specific enthalpy may be obtained from the
relation:

hi= Cp (T -Ty)+ (Ah/)r",
with T,,, = 298 K and C, 5 = 544 cal/gm-mole-K, Cp.a2 = 7.00 cal/gm—-mole-K, C,y = 497 cal/gm-mole-K,

Con, = 696 cal/gm—-mole-K .
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Table IV. Constants for Viscosityf Curve-Fits
(I000K < T< 30000 K)tt

Speciest Ay B, Cu: D, E,,

N, 0.0 0.0 0.0203 0.4329 -11.8153
0, 0.0 0.0 0.0484 -0.1455 -8.9231
N 0.0 0.0 0.0120 0.5930 -12.3805
0] 0.0 0.0 0.0205 0.4257 -11.5803
NO 0.0 0.0 0.0452 -0.0609 -9.4596
NO* 0.0913 -3.3178 45,1426  -270.3948 586.3300
e” 0.0899 -3.2731 44,5782  -267.2522 5744149
N* 0.0895 -3.2573 443511  -265.8276 576.1313
o* 0.0912 -3.3154 45,1290 -270.4211 586.2903
N§ 0.0897 -3.2618 444079  -266.1462 577.1449
05 0.0908 -3.3020 449511  -269.3877 584.4130

t Viscosity is obtained in gm/cm—~ sec

1t For températures less than 1000 K, Sutherland’s viscosity law for air may be used for all
species.

t The ionic species viscosities given here are for an electron pressure of 1 atm. For different
electron pressures, these values should be corrected by the formula given in equation (24a) in
the main text.
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Table V. Constants for Frozen Thermal Conductivityt Curve-Fits
(1000 K £ T < 30000 K)t+

Speciest Ak, BK/"_ CK,_‘, DK“ EK”

N, 0.0418 -1.2720 14,4571 -71.9660 122.5745
0, 0.0776 -2.5007 30.1390 -160.1758 307.3634
N 0.0 0.0 0.0169 0.5373 -12.8682
o 0.0 0.0 0.0319 0.2485 -11.6657
NO 0.0263 -0.8130 9.4203 -47.6841 79.4139
NO* 0.0 0.0431 -0.5477 2.1912 -17.8610
e” 0.0908 -3.3046 449877  -269.6002 588.9412
N* 0.1023 -3.6925 49.8997  -297.1291 641.3168
o* 0.0534 -2.0710 29.9141  -188.4951 421.3914
Ny 0.0918 -3.3760 46.2945  -278.4425 604.2017
05 -0.0125 0.1276 2.5428 -37.7507 111.8110

t Thermal conductivity is obtained in cal/cm—sec—K

T+ For temperatures lower than 1000 K, Sutherland’s law for thermal conductivity of air may
be used for each species.

} The ionic species frozen thermal conductivities given here are for an electron pressure of 1
atm. For different electron pressure, these values should be corrected by employing the for-
mula given in equation (24a) in the main text.



Table V1. Constants for Diffusion Coefficientt Curve-Fits

No.tt Interaction AD-‘,' 85-'/ Cp. Dy Temperature
Pair (i-j) ' ! ! Range, Kt
1 N3;-N, 0.0 0.0112 1.6182 -11.3091
2 0,-N, 0.0 0.0465 0.9271 -8.1137
3 0,-0, 0.0 0.0410 1.0023 -8.3597
4 N-N, 0.0 0.0195 1.4880 -10.3654
S N-0, 0.0 0.0179 1.4848 -10.2810
6 N-N 0.0 0.0033 1.5572 -11.1616
7 O-=N, 0.0 0.0140 1.5824 -10.8819
8§ 0-0, 0.0 0.0226 1.3700 -9.6631
9 O-N 0.0 -0.0048 1.9195 -11.9261
10 0-0 0.0 0.0034 1.5572 -11.1729
11 NO-N, 0.0 0.0291 1.2676 -9.6878
12 NO -0, 0.0 0.0438 0.9647 -8.2380
13 NO-N 0.0 0.0185 1.4882 -10.3301
14 NO-O0 0.0 0.0179 1.4848 -10.3155
15 NO-NO 0.0 0.0364 1.1176 -8.9695
16 NO*-N, 0.0 0.0 1.9000 -13.3343
17 NO*-0, 0.0 0.0 1.9001 -13.3677
18 NO*-N 0.0 0.0 1.8999 -13.1254
19 NO*-0 0.0 0.0 1.9000 -13.1701
20 NO*-NO 0.0 0.0047 1.5552 -11.3713
21 NO*-NO™ -0.1251 3.5135 -29.7280 74.1550
22 e =N, -0.1147 2.8945 -23.0085 659815
23 e -0, -0.0241 0.3464 0.1136 -1.3848 1000-9000
-0.0029 0.0856 0.6655 -0.8205 9000-30000
24 e -N 0.0 0.0 1.5000 -2.9987
25 e -0 0.0581 -1.5975 15.4508 -40.7370
26 e -NO 0.2202 -5.2261 42.0630 -106.0937 1000-8000
0.2871 -8.3759 82.8802 -267.0227 8000-30000
27 e -NOT* -0.1251 3.513¢  -29.7272 79.2610
28 e —-¢” -0.1251 3.5136 -29.7290 79.6126
29 N'=N, 0.0 0.0 1.9000 -13.1144
30 N'-0, 0.0 0.0 1.9000 -13.1357
31 N*-N 0.0 0.0033 1.5572 -11.1616
32 N*-0 0.0 0.0 1.9000 -13.0028
33 N'-NO 0.0 0.0 1.8999 -13.1254
34 NT-NO" -0.1251 35135 -29.7285 74.3825
35 NT=-e¢” -0.1251 3.5134 -29.7272 79.2611
36 N*-NT -0.1251 3.5134 -29.7274 74.5342
37 0*-N, 0.0 0.0 1.9000 -13.1578
38 0*-0, 0.0 0.0 1.9000 -13.1810
39 O0"-N 0.0 0.0 1.9000 -13.0028
40 0%-0 0.0 0.0034 1.5572 -11.1729
41 or-NO 0.0 0.0 1.9000 -13.1701
42 O0*-NO~ -0.1251 35133 -29.7268 74.3330
43 O0v-¢" -0.1251 35134 -29.7274 79.2616
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44 O*-N* -0.1251 35134 297275 745023
45 o0*-o0* -0.1251 35134 -29.7277  74.4687
46 NI -N, 0.0 0.0 19000  -13.3173
47 N3 -0, 0.0 0.0 19000  -13.3495
48 NF-N 0.0 0.0 19000  -13.1144
49 NF-0 0.0 0.0 19000  -13.1578
50 Ni-NO 0.0 0.0 19000  -13.3343
51 Ni-NO* -0.1251 35134 297279  74.1721
52 Nif-e -0.1251 35134 -29.7273  79.2613
53 N -N* -0.1251 35135  -29.7288  74.3947
54 Ni-0* -0.1251 35133 -29.7269 743453
55 Ni-Nj -0.1251 35135  -29.7282  74.1899
56 05 -N, 0.0 0.0 1.9000  -13.3173
57 05 -0, 0.0 0.0 19000 -13.3495
58 07 -N 0.0 0.0 1.9000  -13.1144
59 0F-0 0.0 0.0 19000  -13.1578
60 05 -NO 0.0 0.0 19000  -13.3343
61 03 -NO* -0.1251 35134 -29.7279  74.1721
62 05 -e" -0.1251 35134  -29.7273  79.2613
63 03 -N* -0.1251 35135  -29.7288 743947
64 05 -0* -0.1251 35133 -29.7269  74.3453
65 0;F-N; -0.1251 35135  -29.7282  74.1899
66 05 -03 -0.1251 35135 -20.7282  74.1899

t Diffusion coefficients are obtained in cm?- atm/sec. Diffusion coefficients obtained from these curve-
fits are for an electron pressure of 1 atm. For different electron pressures, the cross sections should be
corrected by the formula given in the main text when the interacting pair of species are both ions or elec-
trons or a combination of the two. Note that diffusion coefficients for N7 and O3 are taken to be the
same.

t+ Cross section Nos. 1-15 are used in a 5-species air model and Nos. 1-28 in a 7-species model.

1 The temperature range for all curve fits is 1000 € T £ 30000 K, except where noted.
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Table VII. Curve-Fit Constants for Collision Cross-Section, Q5D+

No.tt Interaction A ey ijx,x) Ch-i(jx.x) Dm’_x.n Temperature
Pair (i-j) Range, K}
1 N,y,-N, 0.0 -0.0112 -0.1182 4.8464
2 0,;-N, 0.0 -0.0465 0.5729 1.6185
3 0;-0, 0.0 -0.0410 0.4977 1.8302
4 N-N, 0.0 -0.0194 0.0119 4.10585
S N-0, 0.0 -0.0179 0.0152 3.9996
6 N-N 0.0 -0.0033 -0.0572 5.0452
7 O0O-N, 0.0 -0.0139 -0.0825 45785
8§ O0O-0, 0.0 -0.0226 0.1300 3.3363
9 O-N 0.0 0.0048 -0.4195 57774
10 O0-0 0.0 -0.0034 -0.0572 4.9901
11 NO-N, 0.0 -0.0291 0.2324 3.2082
12 NO-0, 0.0 -0.0438 0.5352 1.7252
13 NO-N 0.0 -0.0185 0.0118 4.0590
14 NO-0 0.0 -0.0179 0.0152 3.9996
15 NO - NO 0.0 -0.0364 0.3825 2.4718
16 NO'-N, 0.0 0.0 -0.4000 6.8543
17 NO*-0, 0.0 0.0 -0.4000 6.8543
18 NOT-N 0.0 0.0 -0.4000 6.8543
19 NO*-0 0.0 0.0 -0.4000 6.8543
20 NO*-NO 0.0 -0.0047 -0.0551 4.8737

0.1251 -3.5134 31.2277  -80.6515

=

| Z
S
+

|
=z
S
"

22 e -N, 0.1147 -2.8945 24.5080  -67.3691

23 e -0, 0.0241 -0.3467 1.3887 -0.0110  1000-9000
0.0025 -0.0742 0.7235 -0.2116  9000-30000

24 e ~-N 0.0 0.0 0.0 1.6094

25 e -0 0.0164 -0.2431 1.1231 -1.5561  1000-9000
-0.2027 5.6428  -51.5646  155.6091 9000-30000

26 e -NO -0.2202 52265  -40.5659 104.7126 1000-8000
-0.2871 8.3757  -81.3787  265.6292 8000-30000

27 e -NO” 0.1251 -3.5134 31.2277  -80.6515

280 e —-e” 0.1251 -3.5134 312277  -80.6515

29 NT-N, 0.0 0.0 -0.4000 6.8543

30 NY-0, 0.0 0.0 -0.4000 6.8543

31 N'=N 0.0 -0.0033 -0.0572 5.0452

32 NT-0 0.0 0.0 -0.4000 6.8543

33 N"-NO 0.0 0.0 -0.4000 6.8543

34 NT=-NOT 0.1251 -3.5134 31.2277  -80.6515

35 NT-e€" 0.1251 -3.5134 31.2277  -80.6515

36 NT-NT 0.1251 -3.5134 31.2277  -80.6515

37 O0%-N, 0.0 0.0 -0.4000 6.8543

38 07-0, 0.0 0.0 -0.4000 6.8543

39 O0'-N 0.0 0.0 -0.4000 6.8543

40 0'-0 0.0 -0.0034 -0.0572 4.9901

41 O*-NO 0.0 0.0 -0.4000 6.8543

42 O0*'-NOo* 0.1251 -3.5134 31.2277  -80.6515
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43 0*-e 0.1251  -35134 312277 -80.6515
44 O*-N* 0.1251  -35134 312277  -80.6515
45 o0*-0* 0.1251  -35134 312277 -80.6515
46 N3 -N, 0.0 0.0 -0.4000 6.8543
47 Ni -0, 0.0 0.0 -0.4000 6.8543
48 Ni-N 0.0 0.0 -0.4000 6.8543
49 Ni-O0 0.0 0.0 -0.4000 6.8543
50 Ni-NO 0.0 0.0 -0.4000 6.8543
51 Ni-NO* 0.1251  -35134 312277  -80.6515
52 Ni-e 0.1251  -35134 312277  -80.6515
53 Ni~-N* 0.1251  -35134 312277  -80.6515
54 Nif-0* 0.1251  -35134 312277 -80.6515
55 Nf-NS 0.1251  -35134 312277 -80.6515
56 0F-N, 0.0 0.0 -0.4000 6.8543
s7 03-0, | 0.0 0.0 -0.4000 6.8543
58 05 -N 0.0 0.0 -0.4000 6.8543
59 05 -0 0.0 0.0 -0.4000 6.8543
60 05 -NO 0.0 0.0 -0.4000 6.8543
61 05 -NO* 0.1251  -35134 312277  -80.6515
62 0} -e" 0.1251  -35134 312277  -80.6515
63 OF -N* 0.1251  -35134 312277  -80.6515
64 ;-0° 0.1251  -35134 312277  -80.651S
65 0} -Nj} 0.1251  -35134 312277  -80.6515
6 03-05 01251  -35134 312277  -80.6515

t Cross sections are obtsined in A% 142= 10""%¢m2 Collision cross sections obtained from these

curve-fits are for an electron pressure of 1 arm. For different electron pressures, the cross sections should
be corrected by the formula given in the main text when the interacting pair of species are both ions or
electrons or a combination of the two. Note that cross sections for N7 and Q3 are taken to be the same.

t+ Cross section Nos. 1-15 are used in a S-species air model and Nos. 1-28 in a 7-species model.

t The temperature range for all curve fits is 1000 £ T £ 30000 K, except where noted.
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Table VIIL. Curve-Fit Constants for Collision Cross-Section, _Q_‘-S-z'z)f

No.tt Inte'racFif)n A gl BEY,-‘,“’ Cﬁ‘gl_z.z) Dﬁi(iz,z) Temperature
Pair (i-j) Range, Kf
1 Ny=N, 0.0 -0.0203 0.0683 4.0900
2 0,-N, 0.0 -0.0558 0.75%0 0.8%55
3 0,-0, 0.0 -0.0485 0.6475 1.2607
4 N-N, 0.0 -0.0190 0.0239 41782
5 N-0, 0.0 -0.0203 0.0730 3.8818
6 N-N 0.0 -0.0118 -0.0960 4.3252
7 O-N, 0.0 -0.0169 -0.0143 44195
8 0-0, 0.0 -0.0247 0.1783 3.2517
9 O-N 0.0 0.0065 -0.4467 6.0426
10 0-0 0.0 -0.0207 0.0780 3.5658
11 NO-N, 0.0 -0.038s5 0.4226 2.4507
12 NO-0, 0.0 -0.0522 0.7045 1.0738 .
13 NO-N 0.0 -0.0196 0.0478 40321
14 NO-0 0.0 -0.0203 0.0730 3.8818
15 NO -NO 0.0 -0.0453 0.5624 1.7669
16 NO*-N, 0.0 0.0 -0.4000 6.7760
17 NO*-0, 0.0 0.0 -0.4000 6.7760
18 NO*-N 0.0 0.0 -0.4000 6.7760
19 NO*-0 0.0 0.0 -0.4000 6.7760
20 NO*-NO 0.0 0.0 -0.4000 6.7760
21 NO*-NO? 0.1251 -3.5135 31.2281 -80.1163
22 e =N, 0.1147 -2.8945 24.5080 -67.3691
23 7 -0, 0.0241 -0.3467 1.3887 -0.0110 1000-9000
0.0025 -0.0742 0.7235 -0.2116 9000-30000
24 e -N 0.0 0.0 0.0 1.6094
25 e -0 0.0164 -0.2431 1.1231 -1.5561 1000-9000
-0.2027 5.6428 -51.5646  155.6091 9000-30000
26 e -NO -0.2202 5.2265 -40.5659 104.7126 1000-8000
-0.2871 8.3757 -81.3787  265.6292 8000-30000
27 e -NO* 0.1251 -3.5134 31.2274 -80.1684
28 e -e” 0.1251 -3.5134 31.2274 -80.1684
29 NT=N, 0.0 0.0 -0.4000 6.7760
30 N'-0, 0.0 0.0 -0.4000 6.7760
31 N*=N 0.0 0.0 -0.4146 6.9078
32 N'-0 0.0 0.0 -0.4000 6.7760
33 NY-NO 0.0 0.0 -0.4000 6.7760
34 NT-NO™ 0.1251 -3.5135 31.2281 -80.1163
35 N*T-e¢” 0.1251 -3.5134 31.2274 -80.1684
36 N*-NT 0.1251 -3.5135 31.2281 -80.1163
37 0*-N, 0.0 0.0 -0.4000 6.7760
38 0%-0, 0.0 0.0 -0.4000 6.7760
39 O0"-N 0.0 0.0 -0.4000 6.7760
40 o0T-0 0.0 0.0 -0.4235 6.7787
41 O*-NO 0.0 0.0 -0.4000 6.7760

42 0T-NO" 0.1251 -3.5135 31.2281 -80.1163
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43 O -e” 0.1251 -3.5134 31.2274  -80.1684
4 O*-N? 0.1251 -3.5135 31.2281 -80.1163
45 O0*-0" 0.1251 -3.5135 31.2281 -80.1163
46 N -N, 0.0 0.0 -0.4000 6.7760
47 N3 -0, 0.0 0.0 -0.4000 6.7760
48 N3y -N 0.0 0.0 -0.4000 6.7760
49 N3 -0 0.0 0.0 -0.4000 6.7760
50 N3 -NO 0.0 0.0 -0.4000 6.7760
51 Nj-NO* 0.1251 -3.5135 31.2281 -80.1163
52 Ny -e 0.1251 -3.5134 31.2274  -80.1684
53 Ny -N" 0.1251 -3.5135 31.2281 -80.1163
54 Ny -0" 0.1251 -3.5135 31.2281 -80.1163
55 N3 -NjJ 0.1251 -3.5135 31.2281 -80.1163
56 03 —-N, 0.0 0.0 -0.4000 6.7760
57 05 -0, 0.0 0.0 -0.4000 6.7760
58 03 -N 0.0 0.0 -0.4000 6.7760
59 05 -0 0.0 0.0 -0.4000 6.7760
60 03 -NO 0.0 0.0 -0.4000 6.7760
61 03 -NO™ 0.1251 -3.5135 31.2281 -80.1163
62 05 -e” 0.1251 -3.5135 31.2281 -80.1163
63 Oy -N* 0.1251 -3.5135 31.2281 -80.1163
64 07 -0% 0.1251 -3.5135 31.2281 -80.1163
65 O3 -NJ 0.1251 -3.5135 31.2281 -80.1163
66 05 -07 0.1251 -3.5135 31.2281 -80.1163

t Cross sections are obtained in A% 1A&%= 10"cm2 Collision cross sections obtained from these
curve-fits are for an electron pressure of 1 atm. For different electron pressures, the cross sections should
be corrected by the formula given in the main text when the interacting pair of species are both ions or
electrons or a combination of the two. Note that cross sections for N3 and O; are taken to be the same.

T+ Cross section Nos. 1-15 are used in a S-species air model and Nos. 1-28 in a 7-species model.

t The temperature range for all curve fits is 1000 € T £ 30000 K, except where noted.



—46-

Table IX. Curve-Fit Constants for Collision Cross-Section Ratio, B,;-T
(1000 K< T £ 30000 K)

No.tt Interaction  A,-. Bg. Cye Dg-
Pair (i-j) ’ ’ ’ ’
1 N;-N; 0.0 -0.0073 0.1444 -0.5625
2 0,-N, 0.0 -0.0019 0.0602 -0.2175
3 0,-0, 0.0 0.0001 0.0181 -0.0306
4 N-=-N, 0.0 0.0043 -0.04%94 0.2850
5 N-=-0,; 0.0 0.0033 -0.0366 0.2332
6 N-N 0.0 0.0002 0.0002 0.0537
7 O0-N, 0.0 0.0042 -0.0471 0.2747
8 0-0, 0.0 0.0024 -0.0245 0.1808
9 O-N 0.0 0.0147 -0.2628 1.2943
10 0-0 0.0 0.0002 0.0 0.0549
11 NO-N, 0.0 -0.0045 0.1010 -0.3872
12 NO -0, 0.0 -0.0010 0.0410 -0.1312
13 NO-N 0.0 0.0038 -0.0425 0.2574
14 NO-O0 0.0 0.0033 -0.0366 10.2332
15 NO-NO 0.0 -0.0027 0.0700 -0.2553
16 NO*-N, 0.0 0.0 0.0 0.1933
17 NO™-0, 0.0 0.0 0.0 0.1933
18 NO'-N 0.0 0.0 0.0 0.1933
19 NOT-0 0.0 0.0 0.0 0.1933
200 NO*-NO 0.0 0.0003 -0.0006 0.0632
21 NO"-NO™ 00 0.0 0.0 0.4463
22 e =N, 0.0 0.0 0.0 0.0
23 e -0, 0.0 0.0 0.0 0.0
24 e =N 0.0 0.0 0.0 0.0
25 e -0 0.0 0.0 0.0 0.0
26 e -NO 0.0 0.0 0.0 0.0
27 e -NO™ 0.0 0.0 0.0 0.4463
280 e —-e” 0.0 0.0 0.0 0.4463
29 N'-=-N, 0.0 0.0 0.0 0.1933
30 N'-0, 0.0 0.0 0.0 0.1933
31 N"-N 0.0 0.0002 0.0002 0.0537
32 N'-0 0.0 0.0 0.0 0.1933
33 NT-NO 0.0 0.0 0.0 0.1933
34 NT-NOT 0.0 0.0 0.0 0.4463
35 N7 -¢" 0.0 0.0 0.0 0.4463
36 NT-NT 0.0 0.0 0.0 0.4463
37 OT-N, 0.0 0.0 0.0 0.1933
38 07-0, 0.0 0.0 0.0 0.1933
39 07-N 0.0 0.0 0.0 0.1933
40 07 -0 0.0 0.0002 0.0 0.0549
41 O™ -NO 0.0 0.0 0.0 0.1933
42 07 -=-NO~ 0.0 0.0 0.0 0.4463
43 0T -e” 0.0 0.0 0.0 0.4463
4 OT-N" 0.0 0.0 0.0 0.4463
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45 0*-0* 0.0 0.0 0.0 0.4463
46 Ni-N, 0.0 0.0 0.0 0.1933
47 Ni-0, 0.0 0.0 0.0 0.1933
48 Ni-N 0.0 0.0 0.0 0.1933
49 N;j-0 0.0 0.0 0.0 0.1933
S0 Ni-NO 0.0 0.0 0.0 0.1933
51 N}f-NO* 00 0.0 0.0 0.4463
52 Nj-e 0.0 0.0 0.0 0.4463
53 Nf-N* 0.0 0.0 0.0 0.4463
s4 N}-0* 0.0 0.0 0.0 0.4463
55 NF-N} 0.0 0.0 0.0 0.4463
56 05 -N, 0.0 0.0 0.0 0.1933
57 0Ff -0, 0.0 0.0 0.0 0.1933
58 0Ff-N 0.0 0.0 0.0 0.1933
59 07-0 0.0 0.0 0.0 0.1933
60 03 -NO 0.0 0.0 0.0 0.1933
61 0F -NO* 00 0.0 0.0 0.4463
62 O0Ff -—e 0.0 0.0 0.0 0.4463
63 05 -N* 0.0 0.0 0.0 0.4463
64 05 -0* 0.0 0.0 0.0 0.4463
65 0Ff-N} 0.0 0.0 0.0 0.4463
66 05 -03 0.0 0.0 0.0 0.4463

t The collision cross section ratios are dimensionless parameters and are valid as given for all electron
pressures.

t1 Cross section Nos. 1-15 are used in a 5-species air model and Nos. 1-28 in a 7-species model.
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Sutherland's law:

1.90 - Bs= 14584 X107 oy o oes
Present .
180 --=--- Hansen (Ref.29) ./~
—-— Esch, et al. /
(Ref. 47) /
1.70 - —--— Peng and YA

Pindroh !/
(Ref.41) ///

Temperature, K

Figure 6. Comparison of the viscosity of equilibrium air at 1 atmosphere.
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S Present
------- Hansen (Ref. 29) ya
—-—- Esch, et al. (Ref. 47) ,~
—--— Peng and Pindroh -~

- (Ref. 41) /

Sutherland's law:

_ 6 T2 _ cal
Ks =3.9776 x10 (T +194.4) cm-sec-K
I Y e S R
0 2 4 6 8 10 12 14x10

Temperature, K

Figure 7. Comparison of the frozen thermal conductivity of equilibrium air at
1 atmosphere.
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